3.565 \(\int \frac{(a^2+2 a b x^2+b^2 x^4)^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=164 \[ -\frac{a^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^3 x^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 \left (a+b x^2\right )}+\frac{3 a b^2 \log (x) \sqrt{a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(4*x^4*(a + b*x^2)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*x^2*
(a + b*x^2)) + (b^3*x^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*(a + b*x^2)) + (3*a*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2
*x^4]*Log[x])/(a + b*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0487639, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {1112, 266, 43} \[ -\frac{a^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^3 x^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 \left (a+b x^2\right )}+\frac{3 a b^2 \log (x) \sqrt{a^2+2 a b x^2+b^2 x^4}}{a+b x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^5,x]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(4*x^4*(a + b*x^2)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*x^2*
(a + b*x^2)) + (b^3*x^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])/(2*(a + b*x^2)) + (3*a*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2
*x^4]*Log[x])/(a + b*x^2)

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}}{x^5} \, dx &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \int \frac{\left (a b+b^2 x^2\right )^3}{x^5} \, dx}{b^2 \left (a b+b^2 x^2\right )}\\ &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \operatorname{Subst}\left (\int \frac{\left (a b+b^2 x\right )^3}{x^3} \, dx,x,x^2\right )}{2 b^2 \left (a b+b^2 x^2\right )}\\ &=\frac{\sqrt{a^2+2 a b x^2+b^2 x^4} \operatorname{Subst}\left (\int \left (b^6+\frac{a^3 b^3}{x^3}+\frac{3 a^2 b^4}{x^2}+\frac{3 a b^5}{x}\right ) \, dx,x,x^2\right )}{2 b^2 \left (a b+b^2 x^2\right )}\\ &=-\frac{a^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}{4 x^4 \left (a+b x^2\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 x^2 \left (a+b x^2\right )}+\frac{b^3 x^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}{2 \left (a+b x^2\right )}+\frac{3 a b^2 \sqrt{a^2+2 a b x^2+b^2 x^4} \log (x)}{a+b x^2}\\ \end{align*}

Mathematica [A]  time = 0.0151436, size = 61, normalized size = 0.37 \[ -\frac{\sqrt{\left (a+b x^2\right )^2} \left (6 a^2 b x^2+a^3-12 a b^2 x^4 \log (x)-2 b^3 x^6\right )}{4 x^4 \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)/x^5,x]

[Out]

-(Sqrt[(a + b*x^2)^2]*(a^3 + 6*a^2*b*x^2 - 2*b^3*x^6 - 12*a*b^2*x^4*Log[x]))/(4*x^4*(a + b*x^2))

________________________________________________________________________________________

Maple [A]  time = 0.23, size = 60, normalized size = 0.4 \begin{align*}{\frac{2\,{b}^{3}{x}^{6}+12\,{b}^{2}a\ln \left ( x \right ){x}^{4}-6\,{a}^{2}b{x}^{2}-{a}^{3}}{4\, \left ( b{x}^{2}+a \right ) ^{3}{x}^{4}} \left ( \left ( b{x}^{2}+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^5,x)

[Out]

1/4*((b*x^2+a)^2)^(3/2)*(2*b^3*x^6+12*b^2*a*ln(x)*x^4-6*a^2*b*x^2-a^3)/(b*x^2+a)^3/x^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.42064, size = 85, normalized size = 0.52 \begin{align*} \frac{2 \, b^{3} x^{6} + 12 \, a b^{2} x^{4} \log \left (x\right ) - 6 \, a^{2} b x^{2} - a^{3}}{4 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^5,x, algorithm="fricas")

[Out]

1/4*(2*b^3*x^6 + 12*a*b^2*x^4*log(x) - 6*a^2*b*x^2 - a^3)/x^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac{3}{2}}}{x^{5}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**4+2*a*b*x**2+a**2)**(3/2)/x**5,x)

[Out]

Integral(((a + b*x**2)**2)**(3/2)/x**5, x)

________________________________________________________________________________________

Giac [A]  time = 1.11243, size = 117, normalized size = 0.71 \begin{align*} \frac{1}{2} \, b^{3} x^{2} \mathrm{sgn}\left (b x^{2} + a\right ) + \frac{3}{2} \, a b^{2} \log \left (x^{2}\right ) \mathrm{sgn}\left (b x^{2} + a\right ) - \frac{9 \, a b^{2} x^{4} \mathrm{sgn}\left (b x^{2} + a\right ) + 6 \, a^{2} b x^{2} \mathrm{sgn}\left (b x^{2} + a\right ) + a^{3} \mathrm{sgn}\left (b x^{2} + a\right )}{4 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^4+2*a*b*x^2+a^2)^(3/2)/x^5,x, algorithm="giac")

[Out]

1/2*b^3*x^2*sgn(b*x^2 + a) + 3/2*a*b^2*log(x^2)*sgn(b*x^2 + a) - 1/4*(9*a*b^2*x^4*sgn(b*x^2 + a) + 6*a^2*b*x^2
*sgn(b*x^2 + a) + a^3*sgn(b*x^2 + a))/x^4